Question	Answer		Mark
Number			
1(a)(i)	Use of $v = \frac{2\pi r}{T}$ Or $v = rw$	(1)	
	$v = 2.1 \text{ m s}^{-1}$	(1)	
	v = 2.1 m 3		
	Example of calculation		
	•		
	$v = \frac{2\pi \times 0.4 \text{ m}}{1.2 \text{ s}} = 2.09 \text{ m s}^{-1}$		
			2
1(a)(ii)	Radius/circumference decreased	(1)	
	Measured speed greater than actual speed (dependent on first mark)	(1)	•
			2
1(a)(iii)	Use of $F = Bqv$	(1)	
	$F = 5.9 \times 10^{-24} \text{ N}$	(1)	
	Example of calculation		
	$F = 0.05 \text{ T} \times 1.6 \times 10^{-19} \text{C} \times 7.4 \times 10^{-4} \text{ m s}^{-1} = 5.9 \times 10^{-24} \text{ N}$		2
1(1)			
1(b)	Use of $R\cos\theta = \text{mg and } R\sin\theta = F$		
	Or $\tan\theta = F/mg$	(1)	
	Use of $F = \frac{mv^2}{r}$ (do not award if mg used as the force)	(1)	
	r		
	r = 20 m		
	$(g = 10 \text{ m s}^{-2} \text{ leads to } r = 20.04 \text{ m scores MP1 & 2 only})$	(1)	
	$\left[\frac{g}{10} - 10 \text{ m} \text{ s}^{-10} - 20.04 \text{ m} \text{ scores with } \frac{1}{2} \text{ a } 2 \text{ omy} \right]$		
	Example of calculation		
	$\frac{1}{mv^2}$ $\frac{1}{v^2}$		
	$r = \frac{mv^2}{mg \tan \theta} = \frac{v^2}{g \tan \theta}$		
	$r = \frac{(9 \text{ m s}^{-1})^2}{9.81 \text{ m s}^{-2} \times \tan 22^\circ} = 20.4 \text{ m}$		
	$r = \frac{1}{9.81 \text{ m s}^{-2} \times \tan 22^{\circ}} = 20.4 \text{ m}$		
			3
	Total for question 16		9

Question Number	Answer		Mark
2(a)	Evidence of frictional force = $(0.35 \times mg)$ Use of $F = mr\omega^2$ Or $F = mv^2/r$ Use of $\omega = 2\pi/T$ Or $v = 2\pi r/T$ t = 3.0 s Example of calculation frictional force = 0.35×20 kg × 9.81 m s ⁻² = 68.7 N $F = mr\omega^2$ $\omega = \sqrt{(68.7 \text{ N} / (20 \text{ kg} \times 0.80 \text{ m}))}$ $\omega = 2.1$ rad s ⁻¹ $t = 2\pi/2.1$ rad s ⁻¹ t = 3.0 s	(1) (1) (1) (1)	4
2(b)	There would be no difference Both expressions for force depend on mass Or algebraic equation for ω or <i>T</i> derived (could be in the working for (a)) showing ω or <i>T</i> independent of <i>m</i> Or statement that masses cancel if supported by evidence in (a)	(1)	2
	Total for question 13		6

Question Number	Answer		Mark
·	AnswerFree body force diagram showing 2 forces only Weight/W/mg Tension / T (Each additional forces e.g. horizontal component or resultant 	(1) (1) (1) (1) (1)	Mark 5
	(full credit for the last 3 marks can be given to candidates who draw a vector triangle and derive tan $\theta = T_{\text{horzt}}/\text{mg}$ and then tan $\theta = r\omega^2/g$ and observation) Total for question 12		5

Question Number	Answer	Mark	
4 (a)	Conversion from per minute to per second Conversion from revolutions to radians		(1) (1)
	Example of calculation		
	20 revolutions = 20 x 2π /60 (= 2.1 rads s ⁻¹)		
4(b)	Use of $r\omega^2$ Answer in range 6 - 13 ms ⁻²		(1) (1) (1)
	Total for question 13	5	

Question	Answer	Mark
Number		
5(a)	Use of $F=mv/t$ or $F = ma$ (1) Answer = 2.0 x 10 ⁵ N (1) Eg $F = 12000$ x 57 / 3.5	2
5(b)	Arrow down labelled mg / W (1) Arrow up labelled eg R /reaction / force from seat (1) Equal length vertical arrows from a clear single point / centre of mass and "bottom" (1)	3
5(c)	4mg - mg OR 3mg (1) (m) v^2 / r seen (1) Answer = 110 (m) (1)	3

	Eg $3mg = mv^2/r$	
	$r = (57)^2 / 3g$	
5 (d)	Use of KE / PE conservation (1)	
	Answer = 23 (m s ⁻¹) (1)	2
	Eg $V_2 m(57)^2 = V_2 mv^2 + mg^{139}$ $v^2 = V_2 (57)^2 - 9.81x139$	
5 (e)	Using (<i>m</i>) <i>g</i> only (1)	
	Answer $r = 54$ m [allow ecf] (1)	2
	Eg $mg = mv^2 / r$ $r = (23)^2 / 9.81$	
	Total for question	12